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ABSTRACT 

We prove tha t  in every separable Banach space the a ideals of Aronszajn 

null sets, Gaussian null sets and cube null sets coincide. 

In order to prove Gs differentiability of Lipschitz mappings between Banach 

spaces, various authors introduced, sometimes implicitly, different notions of 'null 

sets' in separable Banach spaces. In all these cases, the null sets form a proper 

a ideal of subsets of the given separable Banach space B and the differentiability 

result says that  Lipschitz mappings from B to Banach spaces having the Radon-  

Nikodym property are Gs differentiable almost everywhere with respect to 

it. 

The first such results were due to Christensen [4] and to Mankiewicz [5]. By 

showing that  the differentiability result holds almost everywhere with respect to 

non-degenerate cube measures, Mankiewicz implicitly introduced the a ideal of 

c u b e  nul l  se ts  in B as the family of those Borel subsets of B that are null for 

every non-degenerate cube measure. (Non-degenerate cube measures in B may 

be defined as distributions of the random variables of the form a + ~~k Xkek, 

where a, e l , e2 , . . .  E B, ~--~k Ilekll < co, the span of e l , e2 , . . ,  is dense in B, 

and Xk axe uniformly distributed independent random variables with values in 

[0, 1].) Christensen's approach is based on the observation that  the a ideal of 

H a a r  null  se ts  in an abelian locally compact polish group B may be defined 

without referring to the Haar measure by: A Borel set E in B is Haar null if 
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there is a Borel probability measure # on B such that  every translate of E has tt 

measure zero. This statement may be therefore used as a definition of the notion 

of Haar null sets in Banach spaces (or, more generally, in polish abelian groups). 

The a ideal of Haar null sets in a separable Banach space clearly contains the 

a ideal of cube null sets, and the inclusion is easily seen to be proper if B is 

infinite dimensional. (For example, every compact subset of B is Haar null, 

while supports of cube measures are compact and not cube null. See, e.g., [2, 

Chapter 8].) 

The next definition of null sets in Banach spaces comes from Aronszajn's 

a t tempt  (see [1]) to give strong estimates of the size of points of G&teaux non- 

differentiability of Lipschitz mappings. For any sequence el, e2 , . . .  E B he defines 

.A(el, e2, . . . )  as the family of those sets E C B that can be written as a union of 

Borel sets E~ such that  each En is null on every line in the direction e~ (i.e., for 

every a E B, )~{t E R : a + ten H E~} = O, where A is the Lebesgue measure). 

The A r o n s z a j n  nul l  sets  are defined as those sets that belong to A(el ,  e2, . . . )  

whenever the span of the sequence el, e2, . . .  E B is dense in B. 

It can immediately be seen that the a ideal of Aronszajn null sets is contained 

in the a ideal of cube null sets. In addition, it has been observed by Phelps [6] 

that  it is also contained in the a ideal of Gau s s i an  null  sets;  the latter being 

defined as the family of those Borel subsets of B that  are null for every Gaussian 

measure. (See also [2, Chapter 8].) 

It should be pointed out that the term 'Borel' in these definitions is essential. 

For example, if it is omitted from Aronszajn's definition, his a ideal would no 

longer be proper even in case B is two dimensional. Indeed, a classical example of 

Sierpinski decomposes the plane (using the continuum hypothesis) into the union 

of two sets, one null on every horizontal line and one null on every vertical line! 

A similar paradoxical decomposition of infinitely dimensional spaces (using only 

axiom of choice) has been used by Bogachev [31 to show that  the definitions of 

Aronszajn null sets and Gaussian null sets would trivially coincide if 'Borel' were 

replaced by 'universally Gaussian measurable'. However, it has been argued on 

several occasions (see, e.g., [7]) that the problem of coincidence of these classes 

should be answered for the original definitions. In this note we answer this 

problem by showing that: 

THEOREM 1: In every separable Banach space, the a ideals of Aronszajn null 

sets, Gauss/an null sets and cube null sets coincide. 

It was mentioned that  the a ideal of Aronszajn null sets is contained in the 

a ideal of cube null sets and in the a ideal of Gaussian null sets. We have to 
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prove tha t  for every Borcl non-Aronszajn null set A there exist a non-degenerate  

cube measure # and a non-degenerate Gaussian measure "y for which #(A) > 0 

and 3'(A) > 0. We prove a slightly more precise result: 

THEOREM 2: Let e l , e 2 , . . .  �9 B be a fixed sequence with dense span in B and 

A C B a Borel set not belonging to A(e l , e2 , . . . ) .  Then there exist a cube mea- 

sure # and a Gauss/an measure "~ for which #(A) > O, "7(A) > O, and # and "r 

are the distributions of a + ~ ciXiez and b + ~ diYiei, respectively, where ci, d~ 

are positive real numbers, ~ I[ciezll < c~, ~ [Id~e~[[ < c~, X, are uniformly dis- 

tributed random variables with values in [0, 1], Y~ are standard Gaussian random 

variables, and all the variables X~, Yi are independent. 

Definition 1: A system e l , e 2 , . . .  �9 B, e~,e~ . . . .  �9 B* is called o r t h o g o n a l  if 

[[ei[[ = 1, (e~,e3) = 5~ for every i , j ,  and the span of the sequence e l , e 2 , . . ,  is 

dense in B. 

LEMMA 1: I f  the span of a sequence el, e2, . . . �9 t~ is dense in B, then there exists 
C X 3  . - -  

an orthogonal system f l ,  f 2 , . . .  �9 B, f~, f ~ , . . .  �9 B* for which ~i=I ker fi - 

{0}, and the linear spans of el, e2 , . . ,  and f l ,  f 2 , . . ,  are the same. 

Proof: Let g~,g~ . . . .  be non-zero elements of B* for which supn(g,~,x ) = [[x[] 
o o  

for every x �9 B. Then  ~i=1 kerg~ = {0}. 

We (:an define fz, f~* by induction such that  [[fi][ = 1, (f*, f~) = 5ii for every 

i , j ,  for every i there exist j ,  k and l such that  ez �9 s p a n ( f l , f 2 . . . f ~ ) ,  fi �9 

s p a n ( e l , e 2 . . . e k )  and g~ �9 span( f~ , f~ , . . . f l*  ). Then we have ~ i ~ l k e r f i  " C 
o o  

N~=I kerg~ = {()}. II 

Definition 2: Let el ,e2 . . . .  �9 B, e l , e l , . . .  �9 B* bc an orthogonal  system such 

tha t  [~i=lkere~ = {0}, and let In = [a,~,bn] C R be an enumerat ion of the 
def 

rational intervals. For every sequence s = (sl, s 2 , . . . ,  sk) we define 

Cs de f {X �9 B: (e;, x) �9 Isi i : 1,2 . . . .  k}, 

and for every Borcl set E and for every x E B let 

T~(x) dej {(rl ,  r 2 , . . .  ,rk) �9 Rk: x § r l el + r2e2 + . . .  § rkek �9 E N Cs }. 

It is easy to see tha t  the sets ~E(X) are Borel and hence we may also define a 

function f~:: B --+ R as follows: 

fiE(X) ~ f  A(T~(x)). 
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LEMMA 2: For every closed set E and for every c >_ 0 the set (x: f ~ ( x )  >_ c} is 

closed. 

Proof: Suppose that  x l , x 2 , . . ,  is a sequence tending to x, and f ~ ( x n )  >_ c for 

every n. We have to show that  f ~ ( x )  >_ e. 

If  for s o m e  ( r l ,  r 2 ,  . �9 �9 , rk) we have (e*, Xn-~-T1 e l  -~-T2e2 ~t_.. .  _~rkek) ~_ (e* ,  Xn} "~ 

r~ E Is,,  then ri is in the interval Is, \ ( e * , z ~ )  of length at most ]Is, I, and x~ --4 x, 

thus Tn d=ef T~(x~)  is contained in a fixed cube of Rk if n is large enough. Since 

A(T,~) >_ c we have A(limsupT,~) >_ c. Now it is enough to show that  for every 

( r l , r 2 , . . . , r k )  E limsupT,~ we have x + r~el + r2e2 + . . .  + rkek E E N Cs, 

and this is immediate because there exists a subsequence x~l, x,~2,.., for which 

Xn,~ + r le l  + r2e2 + ' "  + rkek C E f3 Cs and the set E n Cs is closed. | 

C O R O L L A R Y  1: For every Borel set E and for every sequence s the function f ~  

is Borel measurable.  

Proof." According to Lemma 2 this is clear for every closed set E. If E1 C E2 C 

�9 -. is an increasing sequence of Borel sets, then the function f~T=lE ~ is a limit 

of the functions f ~ .  Similarly, if E1 D E2 D . . .  is a decreasing sequence then 

f~F=1~ ~ is a limit of the functions f ~ .  Since every Borel set is obtained from 

closed sets by countably many increasing unions and decreasing intersections, and 

since limits of Borel measurable functions are Borel measurable, the function f~  

is Bore[ measurable for every Borel set E. II 

Definition 3: For every Borel set E,  every s = (S l ,S2 , . . . , sk)  and for every 

non-negative real number c we define the set E s ~ by induction, as follows. 

If s = 0, we let E s~ d__~f E.  If for s* = ( s l , s2 , . . .  , sk-1)  and c the set E s*~ has 

been defined, then let 

k 

E �9 > c I I  
i=t 

Remarks:  

(1) If E s*~ is closed, then applying Lemma 2 we infer that  the set E s~ is also 

closed. Hence if E is closed then all the sets E s ~ are closed as well. 

(2) By a similar argument, from Corollary 1 we get that  the sets E s ~ are Borel 

for every Borel set E. 

(3) If E1 C E2 and c _> d, then El  ~ C E~d  

LEMMA 3: Suppose  that  1 < l < k, Xl ,X 2 �9 E sls2"''stc and 

xl - x2 E span(el,  e2 , . . . ,  el+l). 
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Then xl  �9 E s~ if and only if x2 C Esc. 

Proof." If  Xl - x 2  �9 s p a n ( e l , e 2 , . . . , e m + l ) ,  say Xl ---- X2 +tie1 + t 2 e 2  + . . .  + 

tm+lem+l, and xl ,x2  �9 E ~s2"''`mr for some l _< m < k, then 

x l  - t - r l e l  -}-r2e2 + ' "  ~ - r m + l e m + l  = 

X2 4- ( r l  n t- t l)el  + (r2 + t2)e2 + - "  + (rm+l + tm+l)em+l ,  

q~sls2...sm+I @C "t TS~Sz"'Sm+~ thus the sets " E ' , , :  . . . . . .  ~ lj and E,a,2 . . . . . .  (x2) are t ranslated copies of each 

other.  Hence these sets are of the same measure with respect to  A, tha t  is, 

xl �9 E sxs2"''~m+~ if and only if x2 C E sx~2"''s'~+~. By induction we have tha t  

xl  �9 E s~ if and only if x2 �9 E s~. | 

s k 
COROLLARY 2: I f  x �9 E s c  then fE,~(x) >_ cl-Ii=l [I~,l. 

Proof'. Applying Lemma 3 for l = k - 1, we have 

s T},~ (x) : T~,*c (x), 

thus 
k 

s X f~s~(x) =fE . ' r  ) > c H [ I ~ , l "  
i=1 

LEMMA 4: If[or a sequence S l , S 2 , . . .  and c > 0 we have ~-:~lIs, I < cc and the 

intersection 

k=l 

is non-empty and dosed, then there exists a non-degenerate cube measure # for 

which #(E)  > O. 

Proof: Let 

Now, we have 

a � 9  f i  ES ~ ~ f  F. 
k=l  

k k 

Indeed, one of  the inclusions is trivial, and the other  follows from n ker e ;  = {0}. 

Let 

Sk de=f {a + y E E s c: y �9 span(el ,  e 2 , . . . ,  ek)}. 
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Applying Lemina 3, we have Sl C Nk ESC for every l, and since F is closed, 

F D ["](Sk + span(ek+1,ek+2 . . . .  )) 
k 

k 
holds. Since A(Sk) >_ cI-L= 1 II~kl, we have tz(Sk + span(ck+l,ek+2,.. .)) >_ c for 

the cube measure I* determined by ["]k C8, i.e. for the distribution of 

(a - ~ ( c L a ) )  + y'~ X, lI,,le, 
k 

where Xi are independent random variables of uniform distributions with values 

in [0, 1]. Thus we obtain #(F) _> c. II 

LEMMA 5: I f  E 1 C E2  C " "  is all increasing sequence of  Borel sets, E C 

Un~176 1 En, and c > d, then for any s 

Osd E ~ c C E n �9 
~ . : ]  

I f  F1 D F2 D ""  is a decreasing sequence of  Bore1 sets and F = I-In'=1 Fn, then 

for any c and s 
o o  

= F~ . 
H 

7 L ~ |  

Prooi9 We prove the statement by induction with respect to the length of the 

sequence s. Clearly E oc C [.],, E~ a and F 0~ = ['In F2 r Assume that E s'c C 

UnE~ "a and F s'c : N~F~ "~ for a given s* gel ( s l , s 2 , . . . , s k - | ) .  Then for 

s = (Sl ,S2, . . . , sk) ,  we have 

Ts~.. ~ ( x ) C O T s T" 5 s Et'a(X) and F,'~(x) = T~-,.~(x) 
n= l  n= l  

for every x C B, thus 

f~..r _< lim f~ . . a  and f~..~ = lim f~ . r  

where the sequence f~, .  ~ is increasing and the sequence f~...~ is decreasing. By 

this we have 
(2<3 OO 

E S C c  U E ~ a  and F ' C =  N 8c F , ~  | 
n = l  n = l  
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LEMMA 6: For every  sequence s = ( s l ,  s 2 , . .  �9 Sk ), for every  pos i t i ve  real numbers  

e and 1 > c > d, and for every Bore1 set E we have 

\( U �9 
a: Ilai<e 

Proof: Let C be defined as the set of the points x �9 E s~ for which (e*k+l,x } is 

not a Lebesgue density point of the e~+ 1 image of the set 

E ~r n (x + span(el, e 2 , " ' ,  e k + l ) ) ,  

i.e. not a density point of the set 

Mx -- {r: 3y~ = x + r le l  + r2e2 + . . .  + rk+lek+l C E sc, (e~+l,Yr } -- r}. 

Applying the Lebesgue density theorem, we immediately see that  C is null on 

every line in the direction ek+l, therefore we have to show that  for every x E 

E s c \ C there exists a a for which x E E (s'a)d. Indeed, since Remark 2 shows 

that  the set E sc " (U~:  II~1<~ E(S'a)d) is Borel, it would then belong to A(ek+l). 
* d S ince  (ek+l,X } is a density point of Mx and ~ < 1, it can be covered by an 

arbitrarily small rational interval I~ such that  the measure of the points of the 
d I interval that  belong to our set is at least ~1 ~ h that  is, there exists a a such that  

(e~+l,X / E Io, II~] < e, and the measure of the set 

{r E Io: 3yr = x + r le l  + r2e2 + ".. + rk+lek+l C E sc, (e*k+l,y~) = r} 

is at least diI~ ]. We fix Sk+l = a. Now, for every fixed r from the above set 

(i.e. for every fixed rk+l) we choose the corresponding Yr E E sc, and applying 

Corollary 2 we have 
k 

> c lI t5 ,1 .  
i=l 

This means that  the measure of the set 

{(tl, t 2 , . . . ,  tk) C I~k: Yr + tie1 + t2e2 + ' "  + tkek E E sc n Cs} 

k 
is at least c YL=I ]Is~ I- Thus the measure of the translated copy 

* t* I~k: t~el t~e~ +t*kek E E sc MCs} { ( t l , t 2 , ' " ,  k) E a +  + + . . .  +rk+tek+l  

k is at least c l-L=1 IIs~ I, and the Fubini theorem gives that  the measure of the set 

{ ( t~ , t~ , . . .  ,t*k,rk+l) C Rk+l: x + t l e l + t ~ e 2 + . .  "+t*kek+rk+lek+l C Es~ClC(s,~)} 



198 M. CSORNYEI Isr. J. Math.  

k d dVlk+l is at least cI-L= 1 IIs~l �9 clls~+ll = , , i=1 [I~l. This set is a subset of 

{(t*l,t~,. . . ,  t'k, rk+l) E Rk+l: x+t~el+t~e2+...+t*kek+rk+lek+l e EsdNC(s,a)}, 

hence we have 
k+l  

el-I  Ilk, f, 
i=1 

tha t  is, x E E (s'a)d, as required. II 

LEMMA 7: For every Borel set A f[ A(e l , e2 , . . . )  and for every 0 < b < 1 there 

exist a closed subset F C A and a sequence of integers Sl ,S2, . . . ,  such that 

II~ [ < 1/2 i and the intersection Nk F ~ 2 ~ k b  is non-empty and closed. 

Proof: It  is enough to show tha t  there exists a closed subset F C A for which 

(']k Fsc ~ ~; because according to Remark  1 all the sets F sc are closed, the set 

~k  FSC is automat ical ly  closed. 

It  is a s tandard  fact tha t  for every Borel set A there exists a decomposi t ion 

A = Un Nk F ~ . . . ~ k  such tha t  

�9 the sets F~t,~2...,~ k are closed; 

�9 F,~ln2...~ k D Fnln2...nknk+l; 

�9 Fna,~...nk C Fnxn2...nk_l(nk+l) ; 

�9 the sets A ~  .... ~ d=ef (.j~ ~ t  F ~  .... ~ ,~ ,~  . . . .  , are Borel. 

Indeed, writing F as a one-to-one continuous image of a closed set Z of sequences 

of integers, it suffices to define F~n2...nk as the closure of the image of Z , ~  2 .... k 

(which is the set of those sequences from Z whose i-th term is at most  ni for 

i < k), and to observe tha t  A ~ n 2 - . ~  is the (one-to-one continuous) image of 

Zn~2...,~k, so it is Borel. (A direct proof observing tha t  the s ta tement  is trivial 

for closed sets and tha t  it remains true after countable unions and intersections 

is also possible.) 

Since applying Lemma 6 we have E ~c \ I.J~: Iz~l<~ E(~'")d E A(ek+l) for every 

Borel set E, E > 0 and 0 < d < c < 1, there exists an a E A such tha t  for 

every rat ional  ~ > 0 and 0 < d < c < 1, and for every possible s l , s : , . . .  ,sk and 

n l , n 2 ,  . . .  , nk ,  
sc A(S,a)d 

a r mntn~...nk \ U nxn2..'n~ 
o':llol<e 

holds. We choose a sequence of rational numbers  1 > r0 > rl  > r2 :> " ' "  :> c. 

N o w ,  

a E A U Anx ~ Snl: a G Ani ar ro 
nl 
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a r - AO'r~ U AS',r' ~ 3s': lIs'l < l /2  and a �9 A~, ~'' 
Sl:[Is 1 1<1/2 

Anln2 /~ An1 L e n a  5 A~ll ~, C U ASllr~ ~ 3n2: a �9 ASllr~, 
n 2  

a {g A~11~ \ U A~iS~2 ~a ~ 3s2: ]I, 2 ] < 1/4 and a �9 ASllSn2zra , 
s2:lls 21<1/4 

A,-,,~2,~ 3 f f  A,~, n2 L e ~ 5  A~,~2,. 3 C U A'~1,~2'~3 ~ 3na:a �9 A~',~2[r . 
n3 

Following this procedure (and applying Remark 3) we have 

a �9 ~'~ A s~s2'''sk c 
'l't 1 'i'~ 2 . . . ' ;q ,  k 

k 
and 

where 

N ASlSz'"sk c C ( ]  F. sls='''sk c nln2..-nk I I n~nz . - .nk  c F  
k k 

F ~f  NF~,nv..nk. 
k 

Now it is immediate tha t  F is a non-empty closed subset of A, and, in view of 

Lemma 5, property Fnl D Fnln: D " "  implies 

N Fs:: n ( n  F,,ln:...,,,) N No:o:.. o, + a .  | 
k k I k 1 

LEMMA 8: Let el,  e2,--,  be a sequence of positive numbers for which ~..n E,~ < co 
and 0 < e~ < 1 for every n. IrA C rIn~176 1] has positive Lebesgue measure in 

[0, 1] N and # is a measure in IR N for which ].t(IIn%l[O, Sn]) > O, then there exists 
a t �9 [0, 1] N such that  for the  measure tit(X) %f tt(X + t) we have tit(A) > 0. 

Proo~ 

fEo,,l  --/o,.  o,11  
= j~[O,1]N /O,I]N XA-t(u)d~(t)d#(u) 

---- j~[0,I]N /0,1]N XA-u(t)dA(t)d#(u) 

= [ A((A - U) N [0, 1]N)d#(u) 
.qo ,1] N 

_> / A((A - u) ~ [0, 1]N)d#(u) 
J[ I  [0,~q 

-- #(H[O,  cn])A(A) > 0, 
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thus there exists a t for which tit(A) > 0. | 

Now we are ready to prove Theorem 2. 

Proof of Theorem 2: If {ei} and {f j}  are two sequences such that each ei is in 

the linear span of finitely many fj's, then A(el, e2, . . . )  C A( f l ,  f2, . . . ) .  Hence, 

if a Borel set A does not belong to A(f l ,  f2 , . . . )  then applying Lemma 1 there 

exists an orthogonal system e l , e2 , . . .  C B, e{,e~, . . .  E B* such that  the linear 

spans of el, e2, . . ,  and f l ,  f 2 , . . ,  are the same and A r A(el,  e2. . . ) .  

Now, applying Lemma 4 and Lemma 7 we have a non-degenerate cube measure 

# for which #(A) > 0 and it can be seen from the proofs that # is the distribution 

of a random variable of the form a + ~ ciXiei. Since each fi is in the linear span 

of finitely many ey's, for numbers c* small enough the support of the distribution 

*X of (a + ~ �89 + ~ c i ifi is contained in the support of the distribution of 

a + ~ ciXiei, moreover, applying Lemma 8 we have #*(A) > 0 for the cube 

measure #* which is the distribution of a* § ~ c*Xifi with a suitable point a* 

and small numbers c*. 

Finally, applying Lemma 8 again we can choose very small numbers di and 

point b such that ~(A) > 0 for the distribution of b + ~ diYifi (where Yi are 

independent standard Gaussian variables). | 

Remark: In the spirit of [1] and [5] it would be natural to state and prove 

our results in Frdchet spaces; this would require only obvious minor changes 

in the arguments, since for our purposes cube and Gaussian measures may be 

defined, e.g., as distributions of a.s. convergent sums a + ~ X i e i  (where Xi are 

independent [0, 1] valued uniformly distributed random variables) and a § ~ Y~e{ 

(where Yi are independent standard Gaussian variables), respectively. 
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